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Problem Definition

Text Detection
Word/line level

Text Recognition
Word/sequence classification 
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Summary Booklet

Word/sequence classification 

End-to-end Recognition



How do we perceive scene text? 

Top-Down vs. Bottom-Up, 
which is better?
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The Story of Oriented Scene Text Detection
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 Specially designed 
features. 

 Two-level classification 
scheme.

 The 1st benchmark 

Detecting Texts of Arbitrary Orientations in Natural Images
[Yao et al., CVPR, 2012]
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dataset for multi-oriented 
text detection: MSRA-TD 
500 



Full process of text detection

Detecting Texts of Arbitrary Orientations in Natural Images
[Yao et al., CVPR, 2012]
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Detecting Texts of Arbitrary Orientations in Natural Images
[Yao et al., CVPR, 2012]

9

 Two sets of rotation-invariant features that facilitate multi-oriented text detection:
 component level: estimate center, scale, and direction before feature 

computation…
 chain level: size variation, color self-similarity, structure self-similarity…



Orientation Robust Text Line Detection in Natural Images 
[Kang et al., CVPR, 2014]

Input Image MSER extraction 

HOCC results Detection results 
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 Build a graph based on MSER components

 Higher-order correlation clustering (HOCC)

 Texton-based texture classifier to discriminate text and non-text regions



Multi-Orientation Scene Text Detection with Adaptive Clustering
[Yin et al., PAMI, 2015]
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 Morphology clustering: grouping characters candidates by the character appearances 
(Color, Stroke width and Compactness).

 Orientation clustering: grouping character pairs by the character pair orientation.

 Projection clustering: grouping character pairs by the character pair intercept.
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Reading Text in the Wild with Convolutional Neural Networks  
[Jaderberg et al., IJCV, 2016]
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Symmetry-based text line detection in natural scenes
[Zhang et al., CVPR, 2015]
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Synthetic Data for Text Localisation in Natural Images
[Gupta et al., CVPR, 2016]

(a) RGB                                           (b) Depth
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(c) Segmentation                              (d) Text Regions

(e) Synthetic Text 

 Synthesis text in the wild.
 Using synthetic text to  train scene text detector. 

[1] Redmon et al., You Only Look Once: Unified, Real-Time Object Detection, CVPR 2016



DeepText: A Unified Framework for Text Proposal Generation and Text Detection 
in Natural Images  
[Zhong et al.,  arXiv preprint arXiv:1605.07314, 2016.]
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Detecting Text in Natural Image with Connectionist Text Proposal Network  
[Tian et al., ECCV, 2016]
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 Dense sliding windows on feature maps to extract a feature vector of every location. 

 BLSTM to capture the sequential context information.

 Fully-connected layer simultaneously predicts text/non-text scores, y-axis coordinates 
and side-refinement offsets of k anchors.



Detecting Text in Natural Image with Connectionist Text Proposal Network (Cont.)  
[Tian et al., ECCV, 2016]

1. Fine-scale Proposals

2. Recurrent Connectionist Text Proposals 

3. Side-refinement
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Pipeline

TextBoxes: A fast text detector with a single deep neural network 
[Liao et al., AAAI 2017]
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 Fully convolutional network based on SSD[1]. 
 On every map location, a text-box layer predicts a 72-d vector(text presence 

scores (2-d) and offsets (4-d) for 12 default boxes)
 Longer convolutional filters
 Special designed default boxes

[1] Liu et al., SSD: a single shot detector ECCV 2016



Detecting Oriented Text in Natural Images by Linking Segments
[Shi et al., CVPR 2017.]
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 Fully convolutional network inspired by SSD
 Multi-stage outputs for segments and their links
 Solve the problem of CNN receptive field for long texts



Arbitrary-Oriented Scene Text Detection via Rotation Proposals
[Jianqi Ma et al., arXiv:1703.01086, 2017.]

 Use the architecture 
of faster-rcnn

 RPN->Rotated RPN
 RoI->Rotated RoI
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The implementation of 
Rotated RoI



Deep Matching Prior Network: Toward Tighter Multi-oriented Text Detection.
[Liu et al., CVPR 2017.]

 Use the architecture of SSD
 Use different matching strategy
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Multi-Oriented Text Detection with Fully Convolutional Networks
[Zhang et al., CVPR, 2016]
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 The Text-Block FCN is to predict the salient map of text block.

 Multi-oriented text line hypotheses are generated by combining both global and local cues.

 The Character-Centroid FCN is used to remove false positives.



Scene Text Detection Via Holistic, Multi-Channel Prediction
[Yao et al., arXiv:1606.09002, 2016]
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 FCN based network.
 Multi task. Text region, individual characters and their relationship are estimated 

simultaneously.



Process of text detection

Scene Text Detection Via Holistic, Multi-Channel Prediction
[Yao et al., arXiv:1606.09002, 2016]
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EAST: An Efficient and Accurate Scene Text Detector
[Zhou et al., CVPR 2017]

 PVANet(faster than VGG16)

 Multi-channel :
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 Multi-channel :
 Score map
 Rotated bounding boxes
 Quadrangle bounding boxes

 Refined NMS



Deep Direct Regression for Multi-Oriented Scene Text Detection
[He et al., arXiv:1703.08289, 2017.]

Indirect 
regression

Direct 
regression

 Multi-level feature fusion
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Architecture

 Up-sample to quarter size of 
the input image

 Multi-task learning for 
classification and regression

 Post Processing: 
Refined NMS
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Pipeline

TextBoxes: A fast text detector with a single deep neural network 
[Liao et al., AAAI 2017]

31

 Fully convolutional network. 
 On every map location, a text-box layer predicts a 72-d vector(text presence 

scores (2-d) and offsets (4-d) for 12 default boxes)
 Longer convolutional filters
 Special designed default boxes



Quantitative Results of Text Localization 

TextBoxes: A fast text detector with a single deep neural network 
[Liao et al., AAAI 2017]
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CRNN: End-to-End Trainable Network for Scene Text Recognition
[Shi etc. PAMI 2017]

Network Structure
 Convolutional layers extract 

feature maps
 Convert feature maps into 
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 Convert feature maps into 
feature sequence

 Sequence labeling with LSTM
 Convert labeling into text



Combined with a recognition model(CRNN), we achieve state-of-the-art performance on 
ICDAR 2013.

TextBoxes: A fast text detector with a single deep neural network 
[Liao et al., AAAI 2017]
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Detecting Oriented Text in Natural Images by Linking Segments
[Shi et al., CVPR 2017.]
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 Fully convolutional network inspired by SSD
 Multi-stage outputs for segments and their links
 Solve the problem of CNN receptive field for long texts



Linking segments

Detecting Oriented Text in Natural Images by Linking Segments
[Shi et al., CVPR 2017.]
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Linking segments

Long texts can be easily located



Results on ICDAR 2015 Incidental Text

End-to-end results on ICDAR 2015 Incidental Text (combined with CRNN)

Detecting Oriented Text in Natural Images by Linking Segments
[Shi et al., CVPR 2017.]
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End-to-end results on ICDAR 2015 Incidental Text (combined with CRNN)
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ICDAR2015 - Incidental Scene Text dataset 

 Focus on the incidental scene where text may appear in any orientation any location 
with small size or low resolution.

 Includes 1000 training images containing about 4500 readable words and 500 testing 
images.

39



MSRA-TD500

 Contains 500 natural images taken from indoor and outdoor.
 Texts in different languages (Chinese, English or mixture of both), fonts, sizes, 

colors and orientations.
 Annotated with text line bounding box.
 Ref. Detecting Texts of Arbitrary Orientations in Natural Images, CVPR12
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RCTW-17 dataset

 Chinese Text in the Wild(12,034 images, 8034 images for training and 4000 images for 
testing)

 The text annotated in RCTW-17 consists of Chinese characters, digits, and English 
characters, with Chinese characters taking the largest portion.

 ICDAR2017 Competiton on Reading Chinese Scene Text in the Wild (RCTW-17)
 Link: http://mclab.eic.hust.edu.cn/icdar2017chinese/
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Comparison on ICDAR 2015

ICDAR 2015

Method Precision Recall F-Measure Time/s

Zhou et al. CVPR 2017 84 73 78 0.08

Shi et al. CVPR 2017 73 77 75 --

Ma et al. arxiv 2017 82 73 77 --
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Ma et al. arxiv 2017 82 73 77 --

Liu et al. CVPR 2017 73 68 71 --

He et al. arxiv 2017 82 80 81 --

Tian et al. ECCV 2016 74 52 61 --

Zhang et al. CVPR 2016 71 43 54 2.1



Comparison on MSRA-TD 500

MSRA-TD 500

Method Precision Recall F-measure Time/s

Zhou et al. CVPR 2017 87 67 76 0.08

Shi et al. CVPR 2017 86 70 77 0.11

Ma et al. arxiv 2017 82 68 74 0.3
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He et al. arxiv 2017 77 70 74 --

Huang et al. ACM MM 2016 74 68 71 --

Yao et al. arxiv 2016 77 75 76 0.42

Zhang et al. CVPR 2016 83 67 74 --

Yin et al. PAMI 2015 81 63 71 1.4

Kang et al. CVPR 2014 71 62 66 --

Yao et al. CVPR 2012 63 63 60 --



The Drawback of IOU in Scene Text Detection
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Applications

 Fine-grained Classification
 Number 
 Container
 Exercise search
 Word retrieval in the wild
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Fine-Grained Image Classification with Text Information

Motivations

TRUCKEE DINER CAFE COFFEE
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 Visual cues would group (a)-(b) whereas scene text reveals that and groups (b)-(c).

 Texts in images can improve the performance of fine-grained image classification.

(a) (b) (c)

Integrating Scene Text and Visual Appearance for Fine-Grained Image
Classification with Convolutional Neural Networks. arXiv: 1704.04613



Pipeline

Fine-Grained Image Classification with Text Information
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Attention Model

Fine-Grained Image Classification with Text Information
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Results

Fine-Grained Image Classification with Text Information
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Person Re-identification with Numbers
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Container

检测特定的文字并识别
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Exercise

no good persuading her to stopping smoking.Chldren

21.已知直线与抛物线y=2px(p>0)交于A，B两点，且OA⊥OB，OD⊥AB交AB于点D，
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（1）词中所写的是什么学节？从哪里可以看出来？(3分）

3.下列语句有语病的一项是（）（2分）

计算下面机构的自由度，并许说明想使机构具有确定的运动，需要几个原动件



...

...

SHOP

检索关键词 检索结果

database

Word retrieval in the wild

以词搜图：

根据输入的关键词，系统返回数据库中包含该关键词的图片

ATM ...
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Word retrieval in the wild

• 绝大多数人眼清晰可辨的文字块均能被检测并正确识别
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Word retrieval in the wild

• 相当比例的较小及模糊的文字块也能被检测并正确识别
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• 对于数据库中与检索词接近的词，系统将采用模糊匹配（按相似度排序显示）

Word retrieval in the wild

当query为love时的部分检索结果（第一行：精准匹配，第二行：模糊匹配）
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End-to-end recognition.

Retrieving Text in the wild

Integrating Textual and Visual cues in many 
applications 

Future Trends 

applications 
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Other resources (Datasets & Codes)

B. Shi, C. Yao, C. Zhang, X. Guo, F. Huang, X. Bai.  Automatic script identification in the wild. ICDAR'15
Dataset: http://mc.eistar.net/~xbai/mspnProjectPage/

C. Zhang, C. Yao, B. Shi, X. Bai.  Automatic discrimination of text and non-text natural images. ICDAR'15
Dataset&Code: http://mc.eistar.net/~xbai/textDis/textDis.html

C. Yao, X. Bai, W. Liu. A unified framework for multi-oriented text detection and recognition. TIP'14
Dataset: http://mclab.eic.hust.edu.cn/UpLoadFiles/dataset/HUST-TR400.zip

C. Yao, X. Bai, W. Liu, Y. Ma, Z. Tu. Detecting texts of arbitrary orientations in natural images. CVPR'12
Dataset: http://pages.ucsd.edu/~ztu/publication/MSRA-TD500.zip

M. Liao, B. Shi, X. Bai, X. Wang, W. Liu. TextBoxes: A fast text detector with a single deep neural network. AAAI'17
Code: https://github.com/MhLiao/TextBoxes

59

Code: https://github.com/MhLiao/TextBoxes

B. Shi, X. Bai, C. Yao. An end-to-end trainable neural network for image-based sequence recognition and its application to 
scene text recognition. TPAMI'16
Code: http://mclab.eic.hust.edu.cn/~xbai/CRNN/crnn_code.zip

Z. Zhang, C. Zhang, W. Shen, C. Yao, X. Bai. Multi-oriented text detection with fully convolutional networks. CVPR'16
Code: https://github.com/stupidZZ/FCN_Text

Z. Zhang, W. Shen, C. Yao, X. Bai. Symmetry-based text line detection in natural scenes. CVPR'15
Code: https://github.com/stupidZZ/Symmetry_Text_Line_Detection

C. Yao, X. Bai, B. Shi, W. Liu. Strokelets: A learned multi-scale representation for scene text recognition. CVPR'14
Code: http://mclab.eic.hust.edu.cn/~xbai/Strokelet_code/Strokelet_code.zip
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