The Invited Talk in Vision and Learning Seminar (VALSE) Xiamen, 2017-4-22

Oriented Scene Text Detection Revisited

Xiang Bai

Huazhong University of Science and Technology xbai@hust.edu.cn

http://mclab.eic.hust.edu.cn/~xbai/

Outline

- Problem Definition
- Review
- >Our Works
- Benchmarks and Evaluation
- Applications
- Future Trends

Problem Definition

Text Detection Word/line level

Text Recognition Word/sequence classification

End-to-end Recognition

Top-Down vs. Bottom-Up, which is better?

Handcraft Features

- ≻Component level. MSER, SWT…
- Word / line level. Sliding Window

Deep Learning (2014-)

- Region Proposals
- Segmentation

Hybrid Methods

Handcraft Features

Component level. MSER, SWT...

>Word / line level. Sliding Window

Deep Learning (2014-)

- ▶Region Proposals
- Segmentation
- Hybrid Methods

- Specially designed features.
- Two-level classification scheme.
- The 1st benchmark dataset for multi-oriented text detection: MSRA-TD 500

Full process of text detection

> Two sets of rotation-invariant features that facilitate multi-oriented text detection:

- component level: estimate center, scale, and direction before feature computation...
- chain level: size variation, color self-similarity, structure self-similarity...

Orientation Robust Text Line Detection in Natural Images [Kang et al., CVPR, 2014]

- Build a graph based on MSER components
- Higher-order correlation clustering (HOCC)
- Texton-based texture classifier to discriminate text and non-text regions

Multi-Orientation Scene Text Detection with Adaptive Clustering [Yin et al., PAMI, 2015]

- Morphology clustering: grouping characters candidates by the character appearances (Color, Stroke width and Compactness).
- > Orientation clustering: grouping character pairs by the character pair orientation.
- > Projection clustering: grouping character pairs by the character pair intercept.

Handcraft Features

- Component level. MSER, SWT...
- ► Word / line level. Sliding Window

Deep Learning (2014-)

- Region Proposals
- Segmentation
- Hybrid Methods

Reading Text in the Wild with Convolutional Neural Networks [Jaderberg et al., IJCV, 2016]

Symmetry-based text line detection in natural scenes [Zhang et al., CVPR, 2015]

Synthetic Data for Text Localisation in Natural Images [Gupta et al., CVPR, 2016]

(e) Synthetic Text

- > Synthesis text in the wild.
- Using synthetic text to train scene text detector.

[1] Redmon et al., You Only Look Once: Unified, Real-Time Object Detection, CVPR 2016

DeepText: A Unified Framework for Text Proposal Generation and Text Detection in Natural Images

[Zhong et al., arXiv preprint arXiv:1605.07314, 2016.]

- Dense sliding windows on feature maps to extract a feature vector of every location.
- BLSTM to capture the sequential context information.
- Fully-connected layer simultaneously predicts text/non-text scores, y-axis coordinates and side-refinement offsets of k anchors.

1. Fine-scale Proposals

Fig. 2: Left: RPN proposals. Right: Fine-scale text proposals.

2. Recurrent Connectionist Text Proposals

Fig. 3: Top: CTPN without RNN. Bottom: CTPN with RNN connection.

3. Side-refinement

- Fully convolutional network based on SSD[1].
- On every map location, a text-box layer predicts a 72-d vector(text presence scores (2-d) and offsets (4-d) for 12 default boxes)
- Longer convolutional filters
- Special designed default boxes

[1] Liu et al., SSD: a single shot detector ECCV 2016

Detecting Oriented Text in Natural Images by Linking Segments [Shi et al., CVPR 2017.]

- Fully convolutional network inspired by SSD
- Multi-stage outputs for segments and their links
- Solve the problem of CNN receptive field for long texts

Arbitrary-Oriented Scene Text Detection via Rotation Proposals [Jianqi Ma et al., arXiv:1703.01086, 2017.]

- Use the architecture of faster-rcnn
- RPN->Rotated RPN
- Rol->Rotated Rol

The implementation of Rotated Rol

Deep Matching Prior Network: Toward Tighter Multi-oriented Text Detection. [Liu et al., CVPR 2017.]

- Use the architecture of SSD
- Use different matching strategy

Handcraft Features

- ► Component level. MSER, SWT...
- >Word / line level. Sliding Window

Deep Learning (2014-)

- ▶Region Proposals
- Segmentation
- Hybrid Methods

- > The Text-Block FCN is to predict the salient map of text block.
- > Multi-oriented text line hypotheses are generated by combining both global and local cues.
- > The Character-Centroid FCN is used to remove false positives.

Scene Text Detection Via Holistic, Multi-Channel Prediction [Yao et al., arXiv:1606.09002, 2016]

- FCN based network.
- Multi task. Text region, individual characters and their relationship are estimated simultaneously.

Process of text detection

(a)

Handcraft Features

- ≻Component level. MSER, SWT…
- >Word / line level. Sliding Window

Deep Learning (2014-)

- ▶Region Proposals
- Segmentation
- Hybrid Methods

- PVANet(faster than VGG16)
- > Multi-channel :
 - Score map
 - Rotated bounding boxes
 - Quadrangle bounding boxes
- Refined NMS

Deep Direct Regression for Multi-Oriented Scene Text Detection [He et al., arXiv:1703.08289, 2017.]

Architecture

Outline

Problem Definition
Review
Our work

Benchmarks and Evaluation

Applications

Future Trends

- Fully convolutional network.
- On every map location, a text-box layer predicts a 72-d vector(text presence scores (2-d) and offsets (4-d) for 12 default boxes)
- Longer convolutional filters
- Special designed default boxes

Quantitative Results of Text Localization

Datasets	ICDAR 2011			ICDAR 2013									
Evaluation protocol	I	C13 Eva	al		DetEva	1	Ι	C13 Eva	al		DetEva		Time/s
Methods	Р	R	F	Р	R	F	Р	R	F	Р	R	F	
Jaderberg (Jaderberg et al. 2016)		-	-		-	_	—	-	-		-	-	7.3
MSERs-CNN (Yin et al. 2014)	0.88	0.71	0.78		-	-	-	-	-		-	-	
MMser							0.86	0.70	0.77				0.75
(Zamberletti, Noce, and Gallo 2014)		-	_	-	_	_	0.00	0.70	0.77		-	_	0.75
TextFlow (Tian et al. 2015)	0.86	0.76	0.81		-	-	0.85	0.76	0.80	-	-	-	1.4
FCRNall+filts	223		62-52	0.02	0.75	0.82	81-151		5-5	0.02	0.76	0.83	>1.27
(Gupta, Vedaldi, and Zisserman 2016)	-			0.94	0.75	0.02				0.92	0.70	0.05	/1.27
Zhang (Zhang et al. 2016)	-	—	—	-	—	-	0.88	0.78	0.83		—	—	2.1
SSD (Liu et al. 2015)	<u>(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) </u>	-	Ţ	:- <u></u>	-	<u></u>	0.80	0.60	0.68	0.80	0.60	0.69	0.1
Fast TextBoxes	0.86	0.74	0.80	0.88	0.74	0.80	0.86	0.74	0.80	0.88	0.74	0.81	0.09
TextBoxes	0.88	0.82	0.85	0.89	0.82	0.86	0.88	0.83	0.85	0.89	0.83	0.86	0.73

CRNN: End-to-End Trainable Network for Scene Text Recognition [Shi etc. PAMI 2017]

Combined with a recognition model(CRNN), we achieve state-of-the-art performance on ICDAR 2013.

strongly	End-to-E	nd results		Word spotting Results			
Method	Recall	Precision	Hmean	Recall	Precision	Hmean	
HUST_MCLAB	87.68 %	95.83 %	91.57 %	90.77 %	97.25 %	93.90 %	
Adelaide_ConvLST	79.50 %	96.68 %	87.25 %	85.05 %	98.91 %	91.46 %	
SRC-B-TextProces	81.79 %	93.17 %	87.11 %	84.58 %	95.14 %	89.55 %	
VGGMaxBBNet_095	82.12 %	91.05 %	86.35 %	86.68 %	94.64 %	90.49 %	
VGGMaxBBNet (0	82.99 %	89.63 %	86,18 %	87.62 %	93.05 %	90.25 %	
Yunos_Robot1.0	75.57 %	95.06 %	84.20 %	78.97 %	96.30 %	86.78 %	
Deep2Text II+	72.08 %	94.56 %	81.81 %	75.82 %	96.29 %	84.84 %	

Detecting Oriented Text in Natural Images by Linking Segments [Shi et al., CVPR 2017.]

- Fully convolutional network inspired by SSD
- Multi-stage outputs for segments and their links
- Solve the problem of CNN receptive field for long texts

Long texts can be easily located

Method	Precision	Recall	F-measure
HUST_MCLAB	47.5	34.8	40.2
NJU_Text	72.7	35.8	48.0
StradVision-2	77.5	36.7	49.8
MCLAB_FCN [30]	70.8	43.0	53.6
CTPN [22]	51.6	74.2	60.9
Megvii-Image++	72.4	57.0	63.8
Yao <i>et al</i> . [26]	72.3	58.7	64.8
SegLink	73.1	76.8	75.0

Results on ICDAR 2015 Incidental Text

End-to-end results on ICDAR 2015 Incidental Text (combined with CRNN)

strongly	End-to-E	nd results		Word spotting Results			
Method	Recall	Precision	Precision Hmean		Precision Hmean		
HUST_MCLAB	52.00 %	97.65 %	67.86 %	55.16 %	97.91 %	70.57 %	
Baidu IDL	60.81 %	67.54 %	64.00 %	62.82 %	69.02 %	65.78 %	
TextProposals + D	37.89 %	89.84 %	53.30 %	40.50 %	90.73 %	56.00 %	
SRC-B-TextProces	40.11 %	76.42 %	52.61 %	41.42 %	77.91 %	54.08 %	
Yunos_Robot1.0	36.30 %	67.81 %	47.29 %	38.30 %	69.83 %	49.47 %	
Megvii-Image++	39.38 %	57.48 %	46.74 %	42.29 %	61.02 %	49.95 %	

Outline

Problem Definition
Review
Our work
Benchmarks and Evaluation
Applications
Future Trends

ICDAR2015 - Incidental Scene Text dataset

- Focus on the incidental scene where text may appear in any orientation any location with small size or low resolution.
- Includes 1000 training images containing about 4500 readable words and 500 testing images.

MSRA-TD500

- > Contains 500 natural images taken from indoor and outdoor.
- Texts in different languages (Chinese, English or mixture of both), fonts, sizes, colors and orientations.
- Annotated with text line bounding box.
- Ref. Detecting Texts of Arbitrary Orientations in Natural Images, CVPR12

RCTW-17 dataset

- Chinese Text in the Wild(12,034 images, 8034 images for training and 4000 images for testing)
- The text annotated in RCTW-17 consists of Chinese characters, digits, and English characters, with Chinese characters taking the largest portion.
- ICDAR2017 Competiton on Reading Chinese Scene Text in the Wild (RCTW-17)
- Link: <u>http://mclab.eic.hust.edu.cn/icdar2017chinese/</u>

ICDAR 2015								
Method	Precision	Recall	F-Measure	Time/s				
Zhou et al. CVPR 2017	84	73	78	0.08				
Shi et al. CVPR 2017	73	77	75					
Ma et al. arxiv 2017	82	73	77					
Liu et al. CVPR 2017	73	68	71					
He et al. arxiv 2017	82	80	81					
Tian et al. ECCV 2016	74	52	61					
Zhang et al. CVPR 2016	71	43	54	2.1				

MSRA-TD 500								
Method	Precision	Recall	F-measure	Time/s				
Zhou et al. CVPR 2017	87	67	76	0.08				
Shi et al. CVPR 2017	86	70	77	0.11				
Ma et al. arxiv 2017	82	68	74	0.3				
He et al. arxiv 2017	77	70	74					
Huang et al. ACM MM 2016	74	68	71					
Yao et al. arxiv 2016	77	75	76	0.42				
Zhang et al. CVPR 2016	83	67	74					
Yin et al. PAMI 2015	81	63	71	1.4				
Kang et al. CVPR 2014	71	62	66					
Yao et al. CVPR 2012	63	63	60					

The Drawback of IOU in Scene Text Detection

Outline

Problem Definition

Review

- >Our work
- Benchmarks and Evaluation

Applications

Future Trends

Applications

- Fine-grained Classification
- Number
- Container
- Exercise search
- Word retrieval in the wild

Motivations

- Visual cues would group (a)-(b) whereas scene text reveals that and groups (b)-(c).
- > Texts in images can improve the performance of fine-grained image classification.

Integrating Scene Text and Visual Appearance for Fine-Grained Image Classification with Convolutional Neural Networks. <u>arXiv: 1704.04613</u>

Fine-Grained Image Classification with Text Information

Fine-Grained Image Classification with Text Information

Results

 (a) BARBERSHOP BARBERSHOP BARBER: 1
 SHOP: 7.8e-7
 MENUS: 2.8e-8
 ROOM: 1.2e-11
 BARBS: 3.8e-18

(b) CAFE CAFE COFFEE: 0.97 ESPRESSO: 0.03 CAPPUCCINO: 2.0e-10 ITALIAN: 2.2e-12

(c) BAKERY BAKERY CAKES: 0.57 PASTRIES: 0.43 OPEN: 5.5e-9 EGGO: 1.1e-10 DANISH: 3.1e-11

(d) CAFE CAFE STARBUCKS: 1 SCOFF: 1.1e-8

(c) ROOTBEER ROOTBEER ROOT: 0.89 BEER: 0.11 BREWED: 1.3e-6 PURE: 2.4e-7 MICRO: 1.1e-9 MADE: 3.8e-10 NATURAL: 2.7e-11 RICH: 1.8e-11 EFL: 5.5e-12

(f) CHABLIS CHABLIS CHABLIS: 0.99 FRANCE: 8.7e-12 FRANC: 1.1e-12 YIN: 2.4e-16 CON: 2.3e-18 CONTROL: 1.9e-18 BOUTIQUE: 2.5e-19 AFFILIATION: 6.2e-20

(g) BITTER BITTER BITTER: 0.99 BROWN: 4.05e-5 PREMIUM: 3.5e-9 SPECIAL: 2.8e-9 ENGLISH: 9.4e-11 EXTRA: 6.11e-11

(h) GUINNESS GUINNESS GUINNESS: 1 SPECIAL: 1.6e-25 EXPORT: 6.4e-27 QUINES: 1.3e-30

Person Re-identification with Numbers

Container

检测特定的文字并识别

no good persuading her to stopping smoking. Children

no good persuading her to stopping smoking.Chldren

21.已知直线与抛物线 y = 2px(p > 0) 交于 A, B 两点, 且 $OA \perp OB$, $OD \perp AB \overline{\varphi} AB$ 于点 D,

21.已知直线与抛物线y=2px(p>0)交于A,B两点,且OA_OB,OD_AB交AB于点D,

(1) 词中所写的是什么季节?从哪里可以看出来? (3分)

(1) 词中所写的是什么学节?从哪里可以看出来?(3分)

3. 下列语句有语病的一项是()(2分)

3.下列语句有语病的一项是()(2分)

计算下面机构的自由度,并并说明想使机构具有确定的运动,需要几个原动件

计算下面机构的自由度,并许说明想使机构具有确定的运动,需要几个原动件

Word retrieval in the wild

Word retrieval in the wild

• 绝大多数人眼清晰可辨的文字块均能被检测并正确识别

Word retrieval in the wild

•相当比例的较小及模糊的文字块也能被检测并正确识别

•对于数据库中与检索词接近的词,系统将采用模糊匹配(按相似度排序显示)

当query为love时的部分检索结果(第一行:精准匹配,第二行:模糊匹配)

End-to-end recognition.
Retrieving Text in the wild
Integrating Textual and Visual cues in many applications

Other resources (Datasets & Codes)

B. Shi, C. Yao, C. Zhang, X. Guo, F. Huang, <u>X. Bai</u>. <u>Automatic script identification in the wild</u>. ICDAR'15 Dataset: <u>http://mc.eistar.net/~xbai/mspnProjectPage/</u>

C. Zhang, C. Yao, B. Shi, <u>X. Bai</u>. <u>Automatic discrimination of text and non-text natural images</u>. ICDAR'15 Dataset&Code: <u>http://mc.eistar.net/~xbai/textDis/textDis.html</u>

C. Yao, <u>X. Bai</u>, W. Liu. <u>A unified framework for multi-oriented text detection and recognition</u>. TIP'14 Dataset: <u>http://mclab.eic.hust.edu.cn/UpLoadFiles/dataset/HUST-TR400.zip</u>

C. Yao, X. Bai, W. Liu, Y. Ma, Z. Tu. <u>Detecting texts of arbitrary orientations in natural images</u>. CVPR'12 Dataset: <u>http://pages.ucsd.edu/~ztu/publication/MSRA-TD500.zip</u>

M. Liao, B. Shi, X. Bai, X. Wang, W. Liu. <u>TextBoxes: A fast text detector with a single deep neural network</u>. AAAI'17 Code: <u>https://github.com/MhLiao/TextBoxes</u>

B. Shi, <u>X. Bai</u>, C. Yao. <u>An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition</u>. TPAMI'16 Code: <u>http://mclab.eic.hust.edu.cn/~xbai/CRNN/crnn_code.zip</u>

Z. Zhang, C. Zhang, W. Shen, C. Yao, <u>X. Bai</u>. <u>Multi-oriented text detection with fully convolutional networks</u>. CVPR'16 Code: <u>https://github.com/stupidZZ/FCN_Text</u>

Z. Zhang, W. Shen, C. Yao, <u>X. Bai</u>. <u>Symmetry-based text line detection in natural scenes</u>. CVPR'15 Code: <u>https://github.com/stupidZZ/Symmetry_Text_Line_Detection</u>

C. Yao, X. Bai, B. Shi, W. Liu. <u>Strokelets: A learned multi-scale representation for scene text recognition</u>. CVPR'14 Code: <u>http://mclab.eic.hust.edu.cn/~xbai/Strokelet_code/Strokelet_code.zip</u> The Invited Talk in Vision and Learning Seminar (VALSE) Xiamen, 2017-4-22

END